
OverIT: An Interactive Overlay for
Touchscreen-based UI Customization
by Demonstration

Kyungyeon Lee, SeungA Chung, Uran Oh
Department of Computer Science and Engineering
Ewha Womans University
Seoul, South Korea
{ruddus716, ewhacsa}@ewhain.net, uran.oh@ewha.ac.kr

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:

• ACM copyright: ACM holds the copyright on the work. This is the historical
approach.

• License: The author(s) retain copyright, but ACM receives an exclusive
publication license.

• Open Access: The author(s) wish to pay for the work to be open access. The
additional fee must be paid to ACM.

This text field is large enough to hold the appropriate release statement assuming it is
single spaced in a sans-serif 7 point font.
Every submission will be assigned their own unique DOI string to be included here.

Abstract
Smartphones have been widely used for various purposes
and stay connected at all times. However, the use of such
touchscreen devices can be physically restricted depend-
ing on users’ context where only one hand is available to
interact with the device. We propose OverIT, a system that
enables users to customize interfaces by adding new but-
tons on an interactive overlay which can be positioned any-
where on the touchscreen where each button serves the
same functionality as an existing one. It is designed to sup-
port users to freely and easily map a certain button event
to a newly created button by performing a demonstration of
a button tap. We expect our system to improve the overall
user experience of one-handed interaction with touchscreen
devices.

Author Keywords
One-handed mobile interaction, UI customization; programming-
by-demonstration; touchscreens

CCS Concepts
•Human-centered computing → Interactive systems
and tools; Touch screens; User interface management
systems;



Introduction
The majority of people prefer using one hand to both hands
when interacting with their mobile phones [2]. However,
one-handed use of mobile phones is not always possible
especially for people with small hands and/or with large
devices, or people whose one hand is occupied for other
tasks (e.g., holding an umbrella). As such, major smart-
phone manufacturers such as Samsung and Apple offer
one-handed mode. However, the mode setting is effect-
less for third-party applications (apps) and the number of
available functions is very limited. Jailbreaking phones is
another option to customize their installed mobile apps, the
process is complicated (e.g., rooting) for most users.

Figure 1: The "LockExposure"
button of a camera app is not
reachable while holding the phone
with one hand (top). However, with
OverIT, users can create a
duplicated button which can be
placed at any desired location
(bottom).

Inspired by prior application-independent software-based
interaction techniques for supporting one-handed uses of
mobile phones [1], we propose OverIT that allows users
to customize their user interface (UI) of an app by adding
duplicates of the original buttons to any desired locations
on the touchscreen as shown in Figure 1. An example use
case scenario of OverIT is as follows:

Alice would like to take a selfie with her smartphone using
a camera app. However, she cannot reach certain buttons
such as the "LockExposure" button at the top left corner
with her thumb. Thus, she wishes to adjust the location of
the certain button to closer to the bottom-right corner of the
screen to be able to tap the button with her thumb while
holding the phone with her right hand.

As programmatically making this type of UI customization
for end-users are difficult, prior studies have shown its ef-
fectiveness of adopting programming by demonstration
(PBD) approach for end users on mobile and IoT platforms
[3, 4]. SUGILITE [3], for instance, allows users to develop
smartphone automation scripts by demonstrating a se-
ries of repeated user input performed on the interface of

a third-party app. Their tool records the interaction as a
script and plays it so that the set of UI input gets performed
in the same order automatically as recorded. Similarly,
the customization process of OverIT was supported via
programming-by-demonstration where the type of demon-
strations is invoking a UI event (i.e., a button tap). The con-
tribution of this work is the proposal of a UI customization
system for improving the user experience of one-hand mo-
bile interactions, which we have open-sourced for public
use.

The System: OverIT
While OverIT can be embedded to any smartphone apps,
we used Open Camera1, an open-source app whose num-
ber of downloads exceeds 10,000,000 on Google Play, to
demonstrate our work.

The System Components
As shown in Figure 2, we added a touchscreen overlay
into this app, and installed a PBD module into the internal
database to record the mappings between functionalities
and UI components (i.e., buttons) of the app. As for the
implementation, we used Java and XML and OverIT was
tested on Galaxy S10 and Galaxy Note 10 running Android
10.0. Note that the system does not need root access and
can be run on any android smartphones running Android
4.19 (API Level 16) or above. The code is open-sourced on
GitHub2. The implementation details per system compo-
nents are below.

Overlay module. OverIT can easily be embedded into
open-sourced Android or custom apps during the devel-
opment by adding an interactive overlay interface to the
target app (Figure 2). That is, the overlay is application-

1https://sourceforge.net/projects/opencamera/
2https://github.com/ruddus716/OverIT



independent so that it is designed not to interfere with the
original app’s interface; it is transparent and its location on
the screen can be easily adjusted by a drag-and-drop ges-
ture. While we had 3-by-4 grid overlay for the demonstration
of OverIT, the width and height of the layout can be set dif-
ferently when embedding this module to the original app.

PBD module. The PBD module is designed to support
UI customization by demonstrations. With this module,
OverIT allows users to easily duplicate a button as well as
its functionality by tapping an existing button on the orig-
inal app. By leveraging the internal database3, we built a
key-value store where the key is the defined UI button, and
value is the method that gets invoked when the correspond-
ing button is tapped such as "b0"-"viewAlbum()" and "b1"-
"takePhoto()" as shown in Figure 2. Once a key-value pair
is recorded via demonstration, users can now tab the new
button that they created on the overlay to experience the
same effect as the original one which is difficult to reach for
one-handed use.

Figure 2: The system overview.
OverIT adds a touchscreen overlay
on the UI of an open-source app
while maintaining a mapping
between newly created buttons and
their corresponding functions.

The Customization Process
To customize the UI of an app using OverIT, a user can fol-
low 4 steps as shown in Figure 3 (watch the video figure as
well for the reference):

1. Initiation: create a new button by tapping the plus
button at the top center of the overlay (Figure 3a).

2. Demonstration: map the functionality of an existing
button to the newly created button by tapping the
original button (Figure 3b1).

3. Arrangement: re-locate the new button (Figure 3b2)
by dragging it to any cell on the overlay (Figure 3b3) if
needed.

3SharedPerferences (https://developer.android.com/reference/android/
content/SharedPreferences)

(a) (b) (c)

Figure 3: The interface of OverIT for (a) adding a new button, (b)
demonstrating a user input by tapping the target button for making
a duplicate and arranging button locations, and (c) re-positioning
the overlay.

4. Re-position: position the overlay to desired location
on the screen by dragging either the top left or the top
right corner anchor buttons (Figure 3c).

Initiation. As shown in Figure 3a, the overlay has a plus
button that creates a button on this overlay. However, No
function is mapped to this newly created button at this point
yet. Note that the number of buttons that users can create
depends on the layout up the overlay. For example, with the
current 3-by-4 layout of the overlay, users can create up to
12 new buttons in total.

Demonstration. To duplicate the functionality of a button
in the original app and map it to the newly created but-
ton, a user has to demonstrate a button tap. For instance,
suppose a user wishes to create a duplicate for "LockEx-
posure" button in the upper left corner as shown in Figure



3b1. Then she can perform a button tab on the "LockEx-
posure" button right after creating a new button on the grid
(Figure 3b2). As soon as the demonstration is completed,
the invoked method and the new button information gets
recorded immediately to the PBD module so that she can
start tapping the duplicated button that functions exactly the
same as the original button. If a user wishes to change the
mapped functionality of a button, she can jut.

Arrangement. Once the new button and one of the func-
tionalities of existing buttons have been mapped after the
demonstration, a user can now change the location of the
new button to a different location as shown in Figure 3b. To
do so, a user should first press-and-hold the target button
(Figure 3b2) that she wishes to arrange, drag it to one of
the cell locations on the grid (Figure 3b3), and then release
the button. If the button has released at a location that is
ambiguous or out of the grid layout, the arrangement will be
canceled and the button will be returned to its original cell
position.

Re-Position. The overlay of OverIT has two draggable but-
tons at the top of each side, which allows users to change
the location of the overlay to a different location on the
screen by performing drag-and-drop as shown as Figure
3c. Since the layer of the overlay and the original app is
independent, Users can still be able to interact with the ex-
isting UI components of the original app even if the overlay
is on top of the components unless they are occluded with
the newly created buttons on the grid.

Future Work and Conclusion
In this study, we presented OverIT, a system that allows
users to customize their UI of an Android app by perform-
ing a simple demonstration with an interactive overlay for
one-handed mobile use. In the future, we are working on

supporting more sophisticated manipulations in OverIT.
For instance, we will enable users to edit buttons and their
mapped functions as well as the size of the overlay. In ad-
dition, while the current version can only duplicate a tap
gesture for buttons, we will allow a variety of interactions in-
cluding dragging and long-click for various UI components
such as sliders and drop-down buttons. Eventually, we plan
to extend this work by deploying it as an app which can be
used as a plug-in for any third-party applications and as-
sess real-world usages and its effectiveness of our system.

References
[1] Amy K Karlson and Benjamin B Bederson. 2008.

One-handed touchscreen input for legacy applications.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1399–1408.

[2] Amy K Karlson, Benjamin B Bederson, and J
Contreras-Vidal. 2006. Understanding single-handed
mobile device interaction. Handbook of research on
user interface design and evaluation for mobile
technology 1 (2006), 86–101.

[3] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers.
2017a. SUGILITE: creating multimodal smartphone
automation by demonstration. In Proceedings of the
2017 CHI conference on human factors in computing
systems. 6038–6049.

[4] Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and
Brad A Myers. 2017b. Programming IoT devices by
demonstration using mobile apps. In International
Symposium on End User Development. Springer,
3–17.


	Introduction
	The System: OverIT
	The System Components
	The Customization Process

	Future Work and Conclusion
	References 

